欧美一级免费欧美精品,91久久精品午夜一区二区,国产精品亚洲综合网站,国产中文在线观看

超臨界流體

跳轉(zhuǎn)到: 導航, 搜索
Bk8m7.jpg

超臨界流體具有許多獨特的性質(zhì),如粘度小、密度、擴散系數(shù)、溶劑化能力等性質(zhì)隨溫度和壓力變化十分敏感:粘度和擴散系數(shù)接近氣體,而密度和溶劑化能力接近液體?! ?/p>

目錄

超臨界流體的定義

純凈物質(zhì)要根據(jù)溫度和壓力的不同,呈現(xiàn)出液體、氣體、固體等狀態(tài)變化,如果提高溫度和壓力,來觀察狀態(tài)的變化,那么會發(fā)現(xiàn),如果達到特定的溫度、壓力,會出現(xiàn)液體與氣體界面消失的現(xiàn)象該點被稱為臨界點,在臨界點附近,會出現(xiàn)流體的密度、粘度、溶解度、熱容量、介電常數(shù)等所有流體的物性發(fā)生急劇變化的現(xiàn)象

溫度及壓力均處于臨界點以上的液體叫超臨界流體(supercritical fluid,簡稱SCF)。例如:當水的溫度和壓強升高到臨界點(t=374.3 ℃,p=22.05 MPa)以上時,就處于一種既不同于氣態(tài),也不同于液態(tài)和固態(tài)的新的流體態(tài)──超臨界態(tài),該狀態(tài)的水即稱之為超臨界水?! ?/p>

超臨界流體的性質(zhì)

超臨界流體由于液體與氣體分界消失,是即使提高壓力也不液化的非凝聚性氣體。超臨界流體的物性兼具液體性質(zhì)與氣體性質(zhì)。它基本上仍是一種氣態(tài),但又不同于一般氣體,是一種稠密的氣態(tài)。其密度比一般氣體要大兩個數(shù)量級,與液體相近。它的粘度比液體小,但擴散速度比液體快(約兩個數(shù)量級),所以有較好的流動性和傳遞性能。它的介電常數(shù)隨壓力而急劇變化(如介電常數(shù)增大有利于溶解一些極性大的物質(zhì))。 另外,根據(jù)壓力和溫度的不同,這種物性會發(fā)生變化?! ?/p>

超臨界流體的應用原理

物質(zhì)在超臨界流體中的溶解度,受壓力和溫度的影響很大.可以利用升溫,降壓手段(或兩者兼用)將超臨界流體中所溶解的物質(zhì)分離析出,達到分離提純的目的(它兼有精餾和萃取兩種作用).例如在高壓條件下,使超臨界流體與物料接觸,物料中的高效成分(即溶質(zhì))溶于超臨界流體中(即萃取).分離后降低溶有溶質(zhì)的超臨界流體的壓力,使溶質(zhì)析出。如果有效成分(溶質(zhì))不止一種,則采取逐級降壓,可使多種溶質(zhì)分步析出。在分離過程中沒有相變,能耗低。  

超臨界流體的應用

如超臨界流體萃取(supercritical fluid extraction,簡稱SFE),超臨界水氧化技術、超臨界流體干燥、超臨界流體染色、超臨界流體制備超細微粒、超臨界流體色譜(supercritical fluid chromatography)和超臨界流體中的化學反應等,但以超臨界流體萃取應用得最為廣泛。很多物質(zhì)都有超臨界流體區(qū),但由于CO2的臨界溫度比較低(304.1K),臨界壓力也不高(7.38MPa),且無毒,無臭,無公害,所以在實際操作中常使用CO2超臨界流體。如用超臨界CO2從咖啡豆中除去咖啡因,從煙草中脫除尼古丁,從大豆或玉米胚芽中分離甘油酯,對花生油、棕櫚油、大豆油脫臭等。又例如從紅花中提取紅花甙及紅花醌甙(它們是治療高血壓肝病的有效成分),從月見草中提取月見草油(它們對心血管病有良好的療效)等。使用超臨界技術的唯一缺點是涉及高壓系統(tǒng),大規(guī)模使用時其工藝過程和技術的要求高,設備費用也大。但由于它優(yōu)點甚多,仍受到重視。

在超臨界水中,易溶有氧氣,可使氧化反應加快,可將不易分解的有機廢物快速氧化分解,是一種綠色的“焚化爐”。

由于超臨界流有密度大且粘稠度小的特點,可將天然氣化為超臨界態(tài)后在管道中運送,這樣既可以節(jié)省動力,又可以增加運輸速率。

超臨界二氧化碳具有低粘稠度、高擴散性、易溶解多種物質(zhì)、且無毒無害,可用于清洗各種精密儀器,亦可代替干洗所用的氯氟碳化合物,以及處理被污染的土壤。

超臨界二氧化碳可輕易穿過細菌細胞壁,在其內(nèi)部引起劇烈的氧化反應,殺死細菌。

利用超臨界流體進行萃取.將萃取原料裝入萃取釜。采用二氧化碳為超臨界溶劑。二氧化碳氣體經(jīng)熱交換器冷凝成液體,用加壓泵把壓力提升到工藝過程所需的壓力(應高于二氧化碳的臨界壓力),同時調(diào)節(jié)溫度,使其成為超臨界二氧化碳流體。二氧化碳流體作為溶劑從萃取釜底部進入,與被萃取物料充分接觸,選擇性溶解出所需的化學成分。含溶解萃取物的高壓二氧化碳流體經(jīng)節(jié)流閥降壓到低于二氧化碳臨界壓力以下進入分離釜(又稱解析釜),由于二氧化碳溶解度急劇下降而析出溶質(zhì),自動分離成溶質(zhì)和二氧化碳氣體二部分,前者為過程產(chǎn)品,定期從分離釜底部放出,后者為循環(huán)二氧化碳氣體,經(jīng)過熱交換器冷凝成二氧化碳液體再循環(huán)使用。整個分離過程是利用二氧化碳流體在超臨界狀態(tài)下對有機物有特異增加的溶解度,而低于臨界狀態(tài)下對有機物基本不溶解的特性,將二氧化碳流體不斷在萃取釜和分離釜間循環(huán),從而有效地將需要分離提取的組分從原料中分離出來?! ?/p>

常見臨界點

最常見的是超臨界二氧化碳,其臨界溫度為31.26℃,臨界壓力為72.9atm

超臨界水的臨界點為374攝氏度,22Mpa。

超臨界甲醇為239℃,8.1MPa  

超臨界流體的發(fā)展史

超臨界流體具有溶解其他物質(zhì)的特殊能力,1822年法國醫(yī)生Cagniard首次發(fā)表物質(zhì)的臨界現(xiàn)象,并在1879即被Hannay和Hogarth二位學者研究發(fā)現(xiàn)無機鹽類能迅速在超臨界乙醇中溶解,減壓后又能立刻結(jié)晶析出.但由于技術,裝備等原因,時至20世紀30年代,Pilat和Gadlewicz兩位科學家才有了用液化氣體提取「大分子化合物」的構(gòu)想.1950年代,美,蘇等國即進行以超臨界丙烷去除重油中的柏油精及金屬,如鎳,釩等,降低后段煉解過程中觸媒中毒失活程度,但因涉及成本考量,并未全面實用化.1954年Zosol用實驗的方法證實了二氧化碳超臨界萃取可以萃取油料中的油脂.此后,利用超臨界流體進行分離的方法沈寂了一段時間,70年代的后期,德國的Stahl等人首先在高壓實驗裝置的研究取得了突破性進展之后,「超臨界二氧化碳萃取」這一新的提取,分離技術的研究及應用,才有實質(zhì)性進展;1973及1978年第一次和第二次能源危機后,超臨界二氧化碳的特殊溶解能力,才又重新受到工業(yè)界的重視.1978年后,歐洲陸續(xù)建立以超臨界二氧化碳作為萃取劑的萃取提純技術,以處理食品工廠中數(shù)以千萬噸計的產(chǎn)品,例如以超臨界二氧化碳去除咖啡豆中的咖啡因,以及自苦味花中萃取出可放在啤酒內(nèi)的啤酒香氣成分. 超臨界流體萃取技術近30多年來引起人們的極大興趣,這項化工新技術在化學反應和分離提純領域開展了廣泛深入的研究,取得了很大進展,在醫(yī)藥,化工,食品及環(huán)保領域成果累累.

關于“超臨界流體”的留言: Feed-icon.png 訂閱討論RSS

目前暫無留言

添加留言

更多醫(yī)學百科條目

個人工具
名字空間
動作
導航
推薦工具
功能菜單
工具箱