生物化學(xué)與分子生物學(xué)/成熟紅細(xì)胞的代謝特點(diǎn)
醫(yī)學(xué)電子書 >> 《生物化學(xué)與分子生物學(xué)》 >> 血漿蛋白與凝血 >> 紅細(xì)胞的代謝 >> 成熟紅細(xì)胞的代謝特點(diǎn) |
生物化學(xué)與分子生物學(xué) |
|
|
成熟紅細(xì)胞不僅無細(xì)胞核,而且也無線粒體、核蛋白體等細(xì)胞器,不能進(jìn)行核酸和蛋白質(zhì)的生物合成,也不能進(jìn)行有氧氧化,不能利用脂肪酸。血糖是其唯一的能源。紅細(xì)胞攝取葡萄糖屬于易化擴(kuò)散,不依賴胰島素。成熟紅細(xì)胞保留的代謝通路主要是葡萄糖的酵解和磷酸戊糖通路以及2.3一二磷酸甘油酸支路(2,3-biphosphoglycerate,2.3桞PG)。通過這些代謝提供能量和還原力(NADH,NADPH)以及一些重要的代謝物(2,3桞PG),對(duì)維持成熟紅細(xì)胞在循環(huán)中約120的生命過程及正常生理功能均有重要作用。
(一)糖酵解
循環(huán)血液中的紅細(xì)胞每天消耗約30g葡萄糖,其中90~95%經(jīng)糖酵解被利用。一分子葡萄糖經(jīng)酵解可產(chǎn)生2分子ATP。紅細(xì)胞中生成的ATP主要用于維持紅細(xì)胞膜上的離子泵(鈉泵、鈣泵),以保持紅細(xì)胞的離子平衡;維持細(xì)胞膜可塑性;谷胱甘肽合成及核苷酸的補(bǔ)救合成等。缺乏ATP則紅細(xì)胞膜內(nèi)外離子平衡失調(diào),紅細(xì)胞內(nèi)Na+進(jìn)入多于K+排出、Ca++進(jìn)入增多,紅細(xì)胞因吸入過多水分而膨大成球狀甚至破裂。同時(shí)由于ATP缺乏,可使紅細(xì)胞膜可塑性下降,硬度增高,易被脾臟破壞,造成溶血。
紅細(xì)胞無氧酵解中生成的NADH+H+是高鐵血紅蛋白還原酶的輔助因子,此酶催化高鐵血紅蛋白還原為有載氧功能的血紅蛋白。
(二)2,3-二磷酸甘油酸(2,3-BPG)支路
在糖無氧酵解通路中,1,3-二磷酸甘油酸(1,3-BPG)有15~50%在二磷酸甘油酸變位酶催化下生成2,3-BPG,后者再經(jīng)2,3-BPG磷酸酶催化生成3磷酸甘油酸。經(jīng)此2,3-BPG的側(cè)支循環(huán)稱2,3-BPG支路(圖10-19)。
圖10-19 2,3-BPG支路
紅細(xì)胞中2,3-BPG磷酸酶活性遠(yuǎn)低于BPG變位酶,使2,3-BPG的生成大于分解,因而紅細(xì)胞中2,3-BPG的濃度處于有機(jī)磷酸酯的巔峰,較糖酵解其它中間產(chǎn)物的有機(jī)磷酸酯高出數(shù)+甚至數(shù)百倍(表10-4)。
表10-4 紅細(xì)胞中各種糖酵解中間產(chǎn)物的濃度(微克分子/升紅細(xì)胞)
糖酵解中間產(chǎn)物 | 動(dòng)脈血 | 靜脈血 |
6-磷酸葡萄糖 | 30.0 | 24.8 |
6-磷酸果糖 | 9.3 | 3.3 |
1,6二磷酸果糖 | 0.8 | 1.3 |
磷酸丙糖 | 4.5 | 5.0 |
3-磷酸甘油酸 | 19.2 | 16.5 |
2-磷酸甘油酸 | 5.0 | 1.9 |
磷酸烯醇式丙酮酸 | 10.8 | 6.6 |
丙酮酸 | 87.5 | 143.2 |
2,3-DPG | 3400 | 4940 |
2,3-BPG能特異地與去氧血紅蛋白(deoxy Hb)結(jié)合,2,3-BPG進(jìn)入血紅蛋白α2β2四聚體中心空隙兩個(gè)β亞基之間,借其分子中所帶5個(gè)負(fù)電荷與兩個(gè)β亞基的帶正帶氨基酸殘基以鹽鍵及氫鍵結(jié)合,使兩個(gè)β亞基保持分開的狀態(tài),即促使血紅蛋白由緊密態(tài)向松馳態(tài)轉(zhuǎn)換,從而減低血紅蛋白對(duì)氧的親和力(圖10-20)。
圖10-20 BPG與Hb的作用示意圖
當(dāng)紅細(xì)胞內(nèi)2,3-BPG濃度升高時(shí)有利于HbO2放氧,而2,3-BPG濃度下降則有利于Hb與氧結(jié)合。BPG變位酶及2,3-BPG磷酸酶受pH值調(diào)節(jié)。在肺泡毛細(xì)血管血液pH高,BPG變位酶受抑制而2,3-BPG磷酸酶活性強(qiáng)。使紅細(xì)胞內(nèi)2,3-BPG的濃度降低,有利于Hb與O2結(jié)合。
反之,在外周組織毛細(xì)血管中,血液pH下降,2,3-BPG的濃度升高,則利于HbO2放氧,借此調(diào)節(jié)氧的運(yùn)輸和利用,具有重要生理意義。但2,3-BPG的生成是以減少一個(gè)ATP的生成為代價(jià)的。
(三)磷酸戊糖通路
紅細(xì)胞內(nèi)利用葡萄糖的5~10%通過磷酸戊糖通路代謝,為紅細(xì)胞提供另一種還原力(NADPH),NADPH在紅細(xì)胞氧化還原系統(tǒng)中發(fā)揮重要作用,具有保護(hù)膜蛋白、血紅蛋白及酶蛋白的巰基不被氧化,還原高鐵血紅蛋白等多種功能。
1.GSH的主要生理功能是對(duì)抗氧化劑對(duì)巰基的氧化。細(xì)胞內(nèi)可自發(fā)生成少量超氧陰離子(O-2),同時(shí)感染時(shí)的白細(xì)胞吞噬作用亦可產(chǎn)生O-2,可被超氧化物歧化酶(superoxidedismufase SOD),催化生成過氧化氫(H2O2)。
而GSH在谷胱甘肽過氧化酶作用下將H2O2還原為H2O,GSH自身被氧化為氧化型谷胱甘肽(GSSG)。后者在谷胱甘肽還原酶催化下,由NADPH+H+供氫重新還原為GSH。(圖10-21)。
圖10-21 谷胱甘肽的氧化與還原
催化NADPH生成的關(guān)鍵酶為葡萄糖-6-磷酸脫氫酶。此酶缺陷的病人一般情況下無癥狀,但有外界因素(如進(jìn)食某種蠶豆)影響,即引起溶血。因吃蠶豆可誘導(dǎo)發(fā)病,故這種病又稱蠶豆病。
2.高鐵血紅蛋白(methemoglobin MHb)的還原:由于各種氧化作用,紅細(xì)胞內(nèi)經(jīng)常有少量MHb產(chǎn)生,而由于紅細(xì)胞內(nèi)有一系列酶促及非酶促的MHb還原系統(tǒng)(表10?),故正常紅細(xì)胞中MHb只占1-2%。
表10-5 紅細(xì)胞中MHb還原系統(tǒng)
還原系統(tǒng) | 占總還原能力的百分比(%) |
酶促還原系統(tǒng) | |
NADH脫氫酶Ⅰ | 61 |
NADH脫氫酶Ⅱ | 5 |
NADH脫氫酶 | 6 |
非酶促還原系統(tǒng) | |
抗壞血酸 | 16 |
谷胱甘肽 | 12 |
由表10-5可知,催化MHb還原的主要是NADH-脫氫酶,輔酶為NADH+H+。NADPH脫氫酶,(以NADPH+H+為輔酶)也參與MHb還作,但作用較小。除此之外,抗壞血酸和GSH可直接還原MHb,而氧化型抗壞血酸和GSSG的還原作用最終需NADPH+H+供氫。
血紅素的生物合成 | 肝臟的生物化學(xué) |
關(guān)于“生物化學(xué)與分子生物學(xué)/成熟紅細(xì)胞的代謝特點(diǎn)”的留言: | 訂閱討論RSS |
目前暫無留言 | |
添加留言 |